·····創新科技 豐富人類生活·····



# SPECIFICATIONS FOR REFOND SURFACE MOUNT LED

# Model :6M-G12-180RGB

(RF-W2MF24JA)

**Company Name:** 

**Confirmed By Customer:** 

DATE:

深圳市瑞豐光電子有限公司

SHENZHEN REFOND OPTOELECTRONICS CO., LTD.

深圳市龍華和平西路特發高新科技園B2棟 B2 wing, Tefa Tech. Industry, West Heping Road, Longhua Town, Shenzhen, China P.C:518109 TEL:0755-29675000 FAX:0755-29675111 http://www.refond-led.com





### Applications

. . . . .

Linear separable LED strip on flexible printed circuit board with self-adhesive back Small in size Available in various colors Edge-lighting of transparent or diffused materials Path & contour marking Illuminated signs

### Technical Operating Data(per meter)

| Product         | Color | Number of | Voltage | Power | Current | Radiance   | Wavelength | Lum. Flux |
|-----------------|-------|-----------|---------|-------|---------|------------|------------|-----------|
|                 |       | LEDs      | [V DC]* | [W]*  | [A]*    | Angle [°]* | [nm] Color | [lm]*     |
|                 |       |           |         |       |         |            | Temp [K]*  |           |
|                 |       |           |         |       |         |            |            |           |
| RF-W2MF24JA-A26 | red   | 30        | 12      | 2.4   | 0.2     | 120        | 620 nm     | 36        |
| RF-W2MF24JA-A26 | green | 30        | 12      | 2.4   | 0.2     | 120        | 525 nm     | 50        |
| RF-W2MF24JA-A26 | blue  | 30        | 12      | 2.4   | 0.2     | 120        | 470 nm     | 10        |

#### All Data are related to the entire module

Due to the special conditions of the manufacturing processes of LED the typical data of technical parameters can only reflect

statistical figures and do not necessarily

correspond to the actual parameters of each single product which could differ from the typical data.

#### Technical Features

Modules optimized for use with RFEOND OPTOTRONIC power supplies.

Size of printed circiut board (L x W x H) 6000 mm x14 mm x 2,2 mm Color control is effected by pulse width modulation

(PWM) of the individual red, green and blue 12V supplies. (Circuit diagram for smallest unit)

Size of smallest unit (L x W): 100 mm x 14 mm Smallest unit of 3 LEDs can be cut out at regular intervals without damaging the rest of the module



### **Safety Information**

The LED module itself and all its components may not be mechanical stressed.

Assembly must not damage or destroy conducting paths on the circuit board.

Installation of LED modules (with power supplies) needs to be made with regard to all applicable electrical and safety standards. Only qualified personnel should be allowed to perform installations.

. . . . . . . .

The LED Module incorporates no protection against short circuits, overload or overheating. Therefore it is absolutely necessary to operate the modules with a electronically stabilised power supply offering protection against the above mentioned safety risks. For dimming applications attention should be paid to specific references in "OPTOTRONIC Technical Guide".

#### REFOND OPTOTRONIC power supplies are specifically designed with protection features for safe operation.

When using power supplies other than OPTOTRONIC the following basic safety features are required, in addition to any other application specific concerns and local safety codes:

Short circuit protection

Overload protection

Overheat protection

Installation of LED modules (with power supplies) needs to be made with regard to all applicable electrical and safety standards. Only qualified personnel should be allowed to perform installations.

Parallel connection is highly recommended as safe electrical operation mode.

Serial connection is not recommended. Unbalanced voltage drop can cause hazardous overload and demage the LED module.

Correct electrical polarity needs to be observed. Wrong polarity may destroy the module!

Please ensure that the power supply is of adequate power to operate the total load.

When mounting on metallic or otherwise conductive surfaces, there needs to be a electrical isolation at soldering points between module and the mounting surface.

#### The maximum run length of LINEARlight Flex RF-W2MB24JA-A26 from any power feed should be limited to 4000 mm.

Pay attention to standard ESD precautions when installing the module.

The module, as manufactured, has no conformal coating and therefore offers no inherent protection against corrosion. The ability to customize the length of the module by cutting at specifically marked points is a key feature of the product and hence the reason for no factory installed conformal coating. For these reasons, it is recommended that the user complete all module modifications first ( cutting, wiring) and then apply a conformal coating in the final stages of installation.

Damage by corrosion will not be honored as a materials defect claim. It is the user's responsibility to provide suitable protection against corrosive agents such as moisture and condensation and other harmful elements.

For applications involving exposure to humidity and dust the module must be protected by a fixture or housing with a suitable protection class. The module can be protected against condensation water by treatment with an appropriate circuit board grade conformal coating. The conformal coating should have the following features:

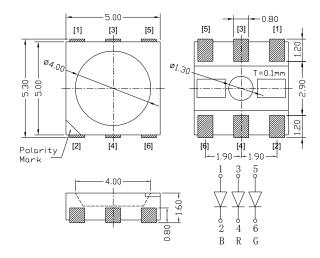
- Optical transparency
- UV-resistance
- low permeability of steam for all climatic conditions
- resistance against corrosive environment

REV:A/0





### Description


120 degree 5.0×5.0×1.60mm SMT-LED in High Orange ,Green and Blue Color with Water Transparent

Static electricity and surge damage the LEDS.

It is recommended to use a wrist band or anti-electrostatic glove when handling the LEDS.

All device, equipment and machinery must be electrically grounded.

## Package Outline



## **Simple Materials As Follows**

| ITEM                  | MATERIALS              |  |  |
|-----------------------|------------------------|--|--|
| Resin                 | Ероху                  |  |  |
| Bonding Wire          | Ø 25 µm Au             |  |  |
| Lens Tape             | Water transparent      |  |  |
| Printed circuit board | PPA                    |  |  |
| Package               | Heat-Resistant Polymer |  |  |



Cat No:

### NOTES:

- 1. All dimensions are in millimeters (inches);
- 2. Tolerances are  $\pm 0.3$ mm (0.012inch) unless otherwise noted.

| APPROVED BY: | CHECKED BY: | PREPARED BY: |  |
|--------------|-------------|--------------|--|
| DATE:        | DATE:       | DATE:        |  |



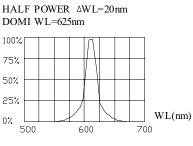
## Absolute maximum ratings at Ta=25 $^{\circ}\mathrm{C}$

| Parameter                   | Symbol | Value      |   |    | Unit |
|-----------------------------|--------|------------|---|----|------|
| Falameter                   |        | R          | G | В  | om   |
| Power dissipation           | Pd     | 72 105 105 |   | mW |      |
| Forward DC current          | lf     | 30         |   | mA |      |
| Reverse DC voltage          | Vr     | 5          |   | V  |      |
| Operating temperature range | Тор    | -40 ~+85   |   | °C |      |
| Storage temperature range   | Tstg   | -40~+100   |   | °C |      |
| Peak pulsing current        | lfp    | 100        |   | mA |      |

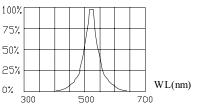
.

## Electro-optical characteristics at Ta=25 $^{\circ}\mathrm{C}$

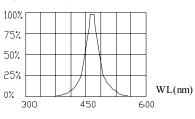
| Parameter                   | Test Condition | Symbol |   | Value |      |      | Unit    |
|-----------------------------|----------------|--------|---|-------|------|------|---------|
| Falameter                   | Test condition |        |   | Min.  | Тур. | Max. | Onic    |
|                             |                | λpeak  | R |       |      |      | nm      |
| Wavelength at peak emission | lf=20mA        |        | G |       |      |      |         |
|                             |                |        | В |       |      |      |         |
|                             |                |        | R |       | 20   |      | Nm      |
| Spectral half bandwidth     | lf=20mA        | Δλ     | G |       | 35   |      |         |
|                             |                |        | В |       | 30   |      |         |
| -                           | lf=20mA        | Vf     | R | 1.8   |      | 2.4  | V<br>Nm |
| Forward voltage             |                |        | G | 2.7   |      | 3.5  |         |
|                             |                |        | В | 3.0   |      | 3.5  |         |
|                             | lf=20mA        | λdom   | R | 620   |      | 632  |         |
| Dominant wavelength         |                |        | G | 525   |      | 535  |         |
|                             |                |        | В | 465   |      | 475  |         |
| -                           |                |        | R |       | 380  | 450  |         |
| Luminous intensity          | lf=20mA        | lv     | G |       | 570  | 600  | Mcd     |
|                             |                |        | В |       | 260  | 300  |         |
| Viewing angle at 50% lv     | lf=10mA        | 2 01/2 |   |       | 120  |      | Deg     |
| Reverse current             | Vr=5V          | lr     |   |       |      | 10   | μΑ      |


**NOTE:** (Tolerance:  $lv \pm 10\%$ ,  $\lambda_d \pm 2nm$ , Vf  $\pm 0.05V$ )

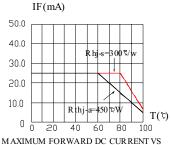
IFP Conditions: Pulse Width  $\leq$  10msec. and Duty  $\leq$  1/10.



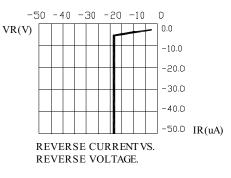

創新科技 豐富人類生活 ·····

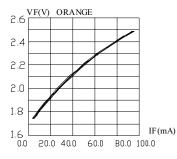

## **Optical characteristics curves**



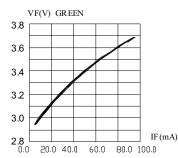

R ELATIVE LUMINOUS INTENSITY VS. WAVELENGTH HALF POWER &WL=35nm DOMI WL=530nm



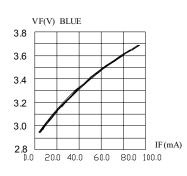

RELATIVE LUMINOUS INTENSITY VS. WAVELENGTH HALF POWER  $\Delta$ WL=30nm DOMI WL=470nm




RELATIVE LUMINOUS INTENSITY VS. WAVELENGTH

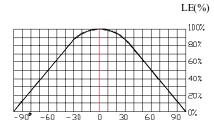



MAXIMUM FORWARD DC CURRENT VS TEMPERATURE DERATING BASED ON Tjmax=110 で






FOR WARD VOLTAGE VS. FOR WARD CURRENT




FORWARD VOLTAGE VS. FORWARD CURRENT



FORWARD VOLTAGEVS. FORWARD CURRENT

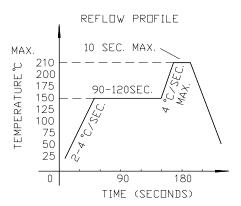
50% POWER ANGLE: 120 <sup>a</sup>



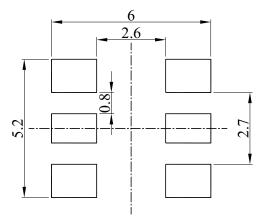


·創新科技 豐富人類生活 ·····

## Reflow profile and test circuit


### Soldering condition

• Recommended soldering conditions


| Reflow Soldering |                              | Hand Soldering |                 |  |
|------------------|------------------------------|----------------|-----------------|--|
| Pre-heat         | 120∼150°C                    | Temperature    | 300°C Max.      |  |
| Pre-heat time    | 120 seconds Max.             |                |                 |  |
| Peak temperature | 210℃ Max.                    | Soldering time | 3 second Max.   |  |
| Soldering time   | 10 seconds Max.              |                | (one time only) |  |
| Condition        | Refer to Temperature-profile |                |                 |  |

· After reflow soldering rapid cooling should be avoided

[Temperature-profile (Surface of circuit board)] Use the following conditions shown in the figure.

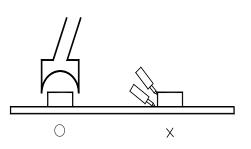


## **RECOMMEND PAD LAYOUT (Units: mm)**



### Soldering iron

Basic spec is  $\leq$  5sec when 260 °C. If temperature is higher, time should be shorter (+10 °C  $\rightarrow$  -1sec).Power dissipation of iron should be smaller than 15W, and temperatures should be controllable .Surface temperature of the device should be under 210 °C


### Rework

- 1. Customer must finish rework within 5 sec under 260  $^\circ C$
- 2. The head of iron can not touch copper foil
- 3. Twin-head type is preferred.

### Precautions For use

Over-current-proof

Customer must apply resistors for protection; otherwise slight voltage shift will cause big current Change (Burn out will happen).





······創新科技 豐富人類生活·····

## Reliability (1)TEST ITEMS AND RESULTS

| Туре                      | Test Item                                         | Test Conditions                   | Note      | Number of Damaged |
|---------------------------|---------------------------------------------------|-----------------------------------|-----------|-------------------|
|                           | Resistance to Soldering<br>Heat(Reflow Soldering) | Tsld=210℃,10sec                   | 2 times   | 0/22              |
| a                         | Temperature Cycle                                 | -20℃ 30min<br>↑↓5min<br>80℃ 30min | 100 cycle | 0/100             |
| Environmental<br>Sequence | Thermal Shock                                     | -20°C 15min<br>↑↓<br>80°C 15min   | 100 cycle | 0/100             |
|                           | High Temperature Storage                          | Ta <b>=80</b> ℃                   | 1000 hrs  | 0/100             |
|                           | Temperature Humidity<br>Storage                   | T₂=60℃<br>RH=90%                  | 1000 hrs  | 0/100             |
|                           | Low Temperature Storage                           | T₂=-30℃                           | 1000 hrs  | 0/100             |
|                           | Life Test                                         | T₂=25℃<br>I⊧=20mA                 | 1000 hrs  | 0/100             |
| Operation<br>Sequence     | High Humidity Heat Life Test                      | 60℃ RH=90%<br>I⊧=20mA             | 500 hrs   | 0/100             |
| Oper<br>Sequ              | Low Temperature Life Test                         | Ta=-20°C<br>I⊧=20mA               | 1000 hrs  | 0/100             |
|                           | Drop                                              | 75cm                              | 3 times   | 0/10              |

### (2)CRITERIA FOR JUDGING THE DAMAGE

| ltem               | Symbol | Test Conditions | Criteria for Judgement |             |  |
|--------------------|--------|-----------------|------------------------|-------------|--|
| item               | Symbol |                 | Min.                   | Max.        |  |
| Forward Voltage    | VF     | IF=10mA         | _                      | U.S.L*)×1.1 |  |
| Reverse Current    | IR     | VR=5V           | _                      | U.S.L*)×2.0 |  |
| Luminous Intensity | IV     | IF=10mA.        | L.S.L**)×0.5           |             |  |

U.S.L.: Upper Standard Level

L.S.L.: Lower Standard Level